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Providing food to wildlife during periods when natural food is limited results

in aggregations that may facilitate disease transmission. This is exemplified in

western Wyoming where institutional feeding over the past century has aimed

to mitigate wildlife–livestock conflict and minimize winter mortality of elk

(Cervus canadensis). Here we review research across 23 winter feedgrounds

where the most studied disease is brucellosis, caused by the bacterium Brucella
abortus. Traditional veterinary practices (vaccination, test-and-slaughter) have

thus far been unable to control this disease in elk, which can spill over to cattle.

Current disease-reduction efforts are being guided by ecological research on

elk movement and density, reproduction, stress, co-infections and scavengers.

Given the right tools, feedgrounds could provide opportunities for adaptive

management of brucellosis through regular animal testing and population-

level manipulations. Our analyses of several such manipulations highlight

the value of a research–management partnership guided by hypothesis test-

ing, despite the constraints of the sociopolitical environment. However,

brucellosis is now spreading in unfed elk herds, while other diseases

(e.g. chronic wasting disease) are of increasing concern at feedgrounds. There-

fore experimental closures of feedgrounds, reduced feeding and lower elk

populations merit consideration.

This article is part of the theme issue ‘Anthropogenic resource subsidies

and host–parasite dynamics in wildlife’.
1. Introduction
Central to many host–pathogen systems is the relationship by which infectious

contacts increase with increasing host density. In wildlife, local aggregations

often occur at sites of food provision, exemplified by winter feeding of elk

(Cervus canadensis) at 23 locations across western Wyoming, USA. Unlike most

anthropogenic food subsidies for wildlife, which exist incidentally (agricultural

crops, garbage dumps) or intentionally in many small, widely dispersed loci

(bird feeders), these feedgrounds are operated by government agencies and are

used by an estimated 80% of the regional elk population [1]. Altogether, approxi-

mately 25 000 elk are fed on an annual basis [2]. Grass or alfalfa hay is generally

provided ad libitum using horse-drawn sleighs except at the federally managed

National Elk Refuge (NER), where pelleted alfalfa is dispensed from mechanized

equipment due to the large number of elk that winter there. To our knowledge,

this feedground complex (figure 1) represents the world’s most concentrated

institutional feeding programme for wildlife.
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Figure 1. There are 23 supplemental feedgrounds for elk in Wyoming. The National Elk Refuge, north of Jackson, is operated by the US Fish and Wildlife Service,
while the remainder are operated by the Wyoming Game and Fish Department. (Online version in colour.)
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Institutional feeding began as early as 1907 and was for-

malized with the creation of the NER in 1912. The state of

Wyoming assumed management of its first feedground in

1929 and the 22 they currently manage were mostly in place

by the 1960s. They were initially established to support dwind-

ling elk herds through the winter and provide a nutritional

diversion from private haystacks, and remain popular with

some sectors of the general public. They facilitate wildlife

viewing and enhance sport-hunting opportunities (important

sources of revenue), limit competition on winter ranges

with other ungulates, mitigate some aspects of livestock con-

flict and locally offset winter starvation by elk. They are,

however, implicated in disease concerns. Each feedground

draws a herd of elk that congregates for weeks or months

when individuals are perhaps most vulnerable to acquiring

new infections. That feedgrounds facilitate disease trans-

mission [3] has in itself created an additional reason for

feeding elk—to separate them from cattle. Thus a cycle is per-

petuated whereby feeding creates and mitigates the same

problem: it enhances transmission among elk [3–6] while

also limiting contact between elk and livestock in winter [7].

The way forward is murky and stakeholders should weigh

the problems of feedgrounds maintaining disease against the

opportunities of using them to adaptively manage disease.

In this paper, we review the effects of winter feedgrounds on

disease ecology with a focus on brucellosis in elk in western

Wyoming. We also offer suggestions for future research

and management.
2. Brucellosis in the Greater Yellowstone
Ecosystem

For the past 50 years, much of the controversy surrounding

the feedgrounds has focused on brucellosis. In the Greater

Yellowstone Ecosystem (GYE), brucellosis is caused by the

bacterium Brucella abortus and affects cattle, elk and bison

(Bison bison). Globally it is an important zoonotic disease,

but human cases in the USA are generally occupation-related

and rare [8]. The greatest burden now imposed by brucellosis

in the USA is economic. Brucellosis causes abortions and

sterility in cattle so state and federal livestock regulatory

agencies impose restrictions on sale and movement of

infected cattle herds, which can reduce the profitability of

affected and neighbouring herds [9].

(a) Interspecific transmission among hosts
Bison and elk have contracted the disease from domestic

cattle multiple times in the GYE since 1917 [10–12]. Although

eradicated from cattle herds in the rest of the USA, brucellosis

periodically spills back from elk to GYE cattle. Transmission

occurs when susceptible animals have direct contact with

aborted fetuses and other infective tissues and fluids

[13,14]. Environmental persistence is relatively short-lived,

as scavengers quickly remove infectious materials [5],

although in cool, wet, shaded conditions the bacteria may

remain viable for several months [15]. Thus, transmission

http://rstb.royalsocietypublishing.org/
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Figure 2. Hypothesized maintenance and reservoir hosts for B. abortus in the GYE during the three stages of the disease to date. Initially (a), cattle (bottom left)
were a source population that infected bison (top left), fed elk (top right) and unfed elk (bottom right). After effective control measures were implemented in cattle
(b) they were no longer a maintenance host but could be reinfected from fed elk. After 2000 (c), unfed elk became part of the reservoir community, able to
maintain the infection in the absence of other host populations and are now a source of infection to cattle. Arrows depict established transmission paths.
Arrow thickness denotes relative importance. (Online version in colour.)
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requires either co-mingling or successive occupation of the

same site within a limited time frame.

The respective roles of elk and cattle as reservoirs for

brucellosis have changed over time, whereas the role of bison

appears to have remained constant (figure 2). Our under-

standing, though, has shifted. Prior to the 2000s, bison were

considered the greatest risk to cattle because they exhibit

higher disease prevalence (approx. 60%) than unfed elk (less

than 5%), and while fed elk had higher seroprevalence

(approx. 20%), they were separated from cattle by the feed-

grounds [3]. Intensive management operations preclude bison

and cattle co-mingling [16], and spillback events to cattle in

the GYE have all been attributed to elk [10,17]. Nevertheless,

bison remain an important maintenance reservoir. Interspecific

transmission between bison and elk has been documented via

whole-genome sequencing at the NER as well as in the free-

ranging populations in Yellowstone National Park (YNP) [10],

although there are currently insufficient data with which to esti-

mate these rates. As a result, disease eradication is unlikely in

one host without concurrent efforts across all hosts [18].

Similarly, prior to the 2000s there was broad consensus

that free-ranging elk outside of the feedground complex

were a non-maintenance population for brucellosis [14].

Although the spread of brucellosis in elk in most regions of

the GYE traces back to the feedgrounds [10], more recently,

it appears that higher levels of brucellosis seroprevalence in

unfed elk herds unassociated with feedgrounds are self-sus-

taining, and in recent years there have been more cases of

brucellosis in cattle away from, rather than in close proximity

to, feedgrounds [6,7,16]. Because brucellosis prevalence is

generally still higher among feedground than free-ranging

elk, feedgrounds may reduce local transmission risk to

cattle by facilitating elk–cattle separation.
(b) Intraspecific transmission in elk
Captive studies have failed to demonstrate male-to-female

sexual transmission in elk, cattle or bison [13,19,20], so that

among- and within-species transmission have the same

requirements with the possible exception of vertical trans-

mission. Although calves born to infected elk exhibit a
variety of outcomes, most are seronegative by 6 months of

age [13]. Elk conceive in autumn and Brucella-induced abor-

tions occur mainly during the third trimester due to

mechanisms that are not perfectly understood (see [21]).

About 50% of elk abort their first pregnancy following infec-

tion, after which the majority are thought to be recovered

with immunity [13,22]. Winter feedgrounds operate between

December and April, and Brucella-induced abortions peak

between March and May [23]. Studies measuring contact and

seroprevalence at different scales suggest that the probability

of intraspecific transmission is correlated with elk density

and aggregations along the feedlines [5,18,24].

Increased prevalence in unfed elk populations (figure 3)

is similarly correlated with elk density and group size [6,27].

Elk group sizes in the GYE have a right-skewed distribution

whereby most groups are small (e.g. fewer than 10), but

most of the individuals in the population occur in groups

of several hundred to several thousand [28]. These large

groups probably play a disproportionate role in brucellosis

maintenance and spread [6,18]. As unfed elk herds in the

GYE have grown, so too have regional density and large

winter aggregations associated with increasing brucellosis

prevalence [27,29]. These large, unfed groups occur most

frequently on private land or public land with late-season

management closures where elk can escape hunting

pressure, are larger on grasslands and even larger still on

irrigated land [27,28]. Irrigated land may represent another

form of anthropogenic food subsidy that is largely outside

of management control and poorly studied in the context

of disease ecology.

A potential hidden cost associated with feedgrounds is

increased stress, which can increase disease susceptibility

[30,31] and enhance intraspecific transmission. Forristal

et al. [32] compared levels of faecal glucocorticoids (fGCs),

a stress hormone, between fed and unfed elk during winter

and found higher levels in fed populations. Feedgrounds

differ in their localized elk density, predator densities and

human activity, all of which could lead to elevated fGCs.

Agonistic behaviour may also increase at feedgrounds as

the result of elk sex- and age-class mixing that normally

does not occur in winter.
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Likewise, co-infections play an important role in the suscep-

tibility, duration, transmission and expression of diseases

[33–36]. Cytokines, which are cell-signalling proteins that

mediate a host’s anti-parasitic response, can be modulated

by parasites themselves, and thus have been proposed as a

useful way to gauge interactions like competition or syner-

gism between co-infecting parasites [37]. Some evidence for

synergism between B. abortus and the weakly pathogenic

Trypanosoma cervi, with which Wyoming elk are chronically

infected [38], has recently emerged [39]. Both appear to share

a strategy in which they upregulate host production of the cyto-

kine interleukin-10 (IL-10), which can impair immune response

and facilitate chronic infections [40–43]. This effect may also

hinder vaccine efficacy [39,43]. Any number of diseases carried

by elk have the potential to interact in ways that are relevant to

feeding. Trypanosoma cervi provides a useful illustration for this

line of questioning that is relatively new to wildlife disease.

Methods exist for quantifying elk cytokines using reverse

transcription real-time polymerase chain reaction [44], and pre-

sent a new approach to assess the effects of winter feeding on

elk health.
(c) Scavengers and predators
Brucella-induced abortions are infrequently detected on feed-

grounds, in part because scavengers quickly consume or

remove the fetuses [5,15,24]. Although transmission has

occurred under experimental conditions, scavenger species

are not thought to be important vectors for the spread or main-

tenance of brucellosis [45–48], and have the potential to

mitigate transmission [18,49]. Coyotes (Canis latrans) are

important fetal scavengers and feedgrounds have higher

scavenging rates than unfed locations [5,15,24]. This has impor-

tant implications for increasing prevalence of brucellosis in

large, unfed aggregations of elk, as coyotes can be hunted

year-round in most of the western USA, but benefit from rela-

tive protection at established feedgrounds. The effects of bears

(Ursus arctos and Ursus americanus) on disease dynamics of the

feeding grounds is unknown, but is probably minor because

they are still hibernating for some of the transmission season.

Wolves (Canis lupus) have expanded their range since their

reintroduction to Yellowstone National Park in 1995 and routi-

nely kill elk at some feedgrounds. On several occasions wolves

have chased elk off of feedgrounds, effectively halting feeding

operations for most of the winter. Their impacts on feeding

operations and winter elk survival at the NER have been mini-

mal, but wolf presence is associated with an increase in the
proportion of the Jackson herd that attend feedgrounds. Hunt-

ing by humans could have a similar effect, with most hunting

occurring in the autumn and winter, and hunter avoidance by

elk (movement to private land) being well documented in the

western USA [50–52]. In areas where elk are sensitized to

the risk of predation by both humans and wolves, elk may

seek refuge at feedgrounds or on private land where hunting

is restricted, leading to dense aggregations with increased

brucellosis transmission risk.

The effect of wolves on winter aggregations of elk has yet to

be fully explored. Wolf presence is associated with larger elk

groups [28], but it is unknown whether wolves are simply fol-

lowing large numbers of elk, if the aggregation pattern

represents a defensive behaviour in response to predators, or

both. Finer spatial resolution is needed to assess the effect of

wolves on brucellosis transmission in the context of winter

feeding, because stagnant elk herds or elk returning to

feedlines would be more likely to encounter fetuses compared

with groups that spend more time on ‘fresh ground’ as a con-

sequence of evading predators. The potential attraction of

wolves to feedgrounds represents an additional concern to

neighbouring ranchers where displacement of elk to private

property may increase the spillback risk or result in incidental

livestock depredation.
3. Adaptive management
Wildlife feeding programmes provide valuable opportunities

for learning about disease dynamics in free-ranging popu-

lations. The GYE elk feedground system is currently

operated—to the extent allowed by logistics, funding and poli-

tics—within an adaptive management framework to allow

outcomes-based comparisons of alternative interventions

[53]. Our experiences with this system underscore the need

for a priori considerations of statistical design: treatments and

controls applied with randomization, replication, stratification

and calibration. Finally, alternative formulations of plausible

models that account for a broad range of ecological and disease

dynamic processes will speed up the learning process.

(a) Vaccination
Feedgrounds offer enormous potential for vaccine delivery.

The Wyoming Game and Fish Department (WGFD) began

vaccinating feedground elk by airgun in 1985 [54] using a vac-

cine developed for use in cattle [55] and later used in elk [56].

By the time the programme ended in 2015, coverage exceeded

http://rstb.royalsocietypublishing.org/
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97% of elk calves, but there was no significant reduction in

seroprevalence or abortion events [57]. Were an effective vac-

cine available, feedgrounds could facilitate an annual

‘doctor’s visit’ to reduce contagion and risk. Unfortunately,

the tools developed for use in cattle have yet to overcome

either the immunological differences of elk, or some other

unknown element such as co-infection [39]. Vaccine-develop-

ment efforts are further constrained by the Select Agent

status designated to B. abortus in the USA, which increases

the regulations associated with handling live Brucella cultures.

Should a new vaccine be developed, at least half of the female

elk population would require vaccination [22], which may only

be feasible where elk are fed. It is also vital that any new vaccine

not impair surveillance efforts, i.e. that the vaccine strain be

discernible from the pathogenic strain in serologic tests.

While empirical results ultimately contributed to the cessa-

tion of elk vaccination, the effects (or lack thereof) may have

been more readily apparent with better implementation of

experimental design. Initially there was only one control site

and until recently there were no competing models to explain

potential changes in seroprevalence (e.g. altered feeding sea-

sons). In addition, treatments could have been phased in or

out over different years across sites in order to control for

annual variation and allow for cleaner pre–post comparisons.
(b) Test-and-slaughter
Experimental removal of seropositive elk took place on the

Muddy Creek, Fall Creek and Scab Creek feedgrounds

between 2006 and 2010. Seroprevalence decreased among year-

ling or older female elk from 37% to 5% over the 5 years of

treatment at Muddy Creek, with approximately 50% of year-

ling and older females being tested. Elk were removed at

Scab Creek and Fall Creek for only two years. While prevalence

dropped at all three feedgrounds during treatment, prevalence

among elk at Scab Creek was higher post-treatment compared

to pre-treatment, and there was minimal change at Fall Creek

(figure 4). Some of this variation can probably be explained

by pre-treatment seroprevalence and feeding season lengths.

Both Scab Creek and Fall Creek had lower pre-treatment

disease prevalence than Muddy Creek, and Fall Creek feed-

ground has the shortest duration feeding season among

feedgrounds; see §3d. This experiment suggests that multiple

years of test-and-slaughter are required to reduce sero-

prevalence but the varying treatment periods, limited

pre-treatment data and different outcomes across sites all

limit the strength of that conclusion. Culling based on serology
results might be useful where a feedground closure is antici-

pated, but absent significant changes to aggregation patterns

during the transmission season, depleting the pool of recov-

ered (and still seropositive) animals could lead to more

infectious contacts in subsequent years and a return to

pre-treatment prevalence [58,59].
(c) Density manipulation
A relatively low-cost method to reduce elk densities during

feeding is by distributing feed over a larger area. The prob-

ability of a susceptible elk becoming infected with

brucellosis is correlated with contact rate and duration of con-

tact with infected-aborted fetuses, which both increase with

local elk density and are thus elevated on feedgrounds [18].

Therefore, management strategies that reduce adult–fetus

contacts [4] and adult–adult contacts [60] should lead to

reduced disease transmission. In one experiment, Brucella-

free elk fetuses were randomly placed along feedlines

under high- and low-density treatments [4]. Under low-den-

sity conditions, the number of fetal contacts fell dramatically,

and elk density itself dropped by 80%.

Low-density feeding has been adopted on 17 state feed-

grounds, although uniform implementation at these sites

has been logistically constrained. Available space for feeding

differs among locations, leading to non-random selection of

treatment sites, and the experience level of elk feeders,

who must work a team of horses through deep snow, is vari-

able. Both of these concerns have the potential to obscure

treatment effects.
(d) Shortened feeding season
In a comprehensive study, over 55% of the spatial variation in

brucellosis seroprevalence among feedground elk was

explained by the length and ending date of the supplemental

feeding season using the average season end date for a feed-

ground over the previous 8 years [61]. This also appears to

be the case over time at the two sites for which there is

strong longitudinal sampling (figure 5). This relationship is

probably a function of abortion events driving the spread of

the disease, and the timing of abortion events, which peak

between March and May [23]. As with low-density feeding,

WGFD has adopted earlier end dates at several feedgrounds.

To mitigate the potential risk of displacing elk onto private

property, targets for ‘early’ ending are based on relative

snow conditions and when elk would normally depart

http://rstb.royalsocietypublishing.org/
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voluntarily, as opposed to calendar date. This approach

reduces risk to cattle, but limits our ability to evaluate

treatment effect.

(e) Temporary sterilization
One recently proposed intervention is the use of a gonado-

tropin-releasing hormone (GnRH) vaccine to temporarily

sterilize female elk and bison [58,62]. In both captive and

free-ranging elk, it reduces pregnancy for 1–3 years following

a single dose [62,63]. It neither disrupts pregnancy upon initial

delivery [63] nor affects the reproductive development of off-

spring [64]. In theory, it could be selectively administered to

infected animals to reduce the risk of abortions in years 2

and 3; however, most abortions are thought to occur in year

1. This is further complicated by imperfect detection of brucel-

losis and the potential for reductions in population growth (see

[58] for an in-depth discussion in the context of bison). Impor-

tantly, if transmission is driven by animals aborting in the

season in which they become infected, then sterilization will

not be effective. If, however, successive abortions in the years

following initial infection are more important than limited cap-

tive studies have suggested, then targeted GnRH vaccination

should circumvent transmission events and increase herd

immunity. Many of the feedground herds are considered to

be ‘over management objective’ so that some loss of reproduc-

tion could help accomplish desirable disease and population

goals, but careful consideration of which animals to target for

vaccination is required.
4. Conclusion and future directions
Prevalence of brucellosis remains high in fed elk and has become

self-sustaining in unfed herds too. Past control efforts at feed-

grounds, including vaccination and test-and-slaughter, have

not changed the dynamics of this host–pathogen system. Current

efforts, including density and feeding-duration manipulations,

have yet to be thoroughly assessed but from current serology

they seem unlikely to resolve brucellosis by themselves. Tempor-

ary sterilization is an option, but it remains unclear how this

could or should be implemented. This leads to the inevitable dis-

cussion of closing feedgrounds and/or reducing feeding

operations. Neighbouring states have closed feedgrounds in the

past, although none have operated on the same scale as Wyoming

and so serious questions remain. Could thewinter range support
the current elk population without supplemental feeding? If not,

should feedground closure be combined with culling and how

would that be received by the public? If feedgrounds were

closed, where would elk spend the winter? How much

additional hazing would be necessary to achieve the same

spatio-temporal separation between elk and cattle? If some feed-

grounds were phased out before others, would that cause larger

elk aggregations at the remaining ones? Are private refugia and

irrigated fields essentially functioning as feedgrounds outside of

management control? Answers to such questions have real

implications for not only disease management but also ranching,

hunting and guiding, non-consumptive tourism, highway safety

and animal welfare ethics.

So far, continued feeding has mollified most stakeholders

within Wyoming. However, changing disease patterns, includ-

ing the arrival of chronic wasting disease (CWD) (see [65]),

might shift the balance of opinion. CWD has now been

detected in mule deer (Odocoileus hemionus) or moose (Alces
alces) in two of the seven elk herd units containing feed-

grounds, although no cases have yet been reported in elk in

those areas. Unlike brucellosis, CWD is fatal in cervids. It is

transmitted both directly and indirectly [66], persists in the

environment [67] and the known transmission routes continue

to expand [68–72]. Feedgrounds are poised to concentrate

infectious material and spread the disease among elk and

other susceptible ungulates that use or pass through those

areas. CWD probably represents a much bigger threat to

cervid populations in the GYE than brucellosis, but has not

yet been shown to infect cattle [73] or humans [74], although

the possibility cannot be ruled out. Unless an efficacious vac-

cine against CWD becomes available, the only useful

applications of feedgrounds to CWD management could be

surveillance and removal of infected animals, the benefits

of which would probably be outweighed by the risks of

concentrating and spreading CWD.

Despite the risks, the continued adaptive management of

WY feedgrounds, together with experimental closures, will

enhance knowledge on disease dynamics and the consequences

of terminating feeding should that be deemed necessary.

Winter feeding in the southern GYE draws in most of the

local elk population to fixed locations for at least three

months each year. By using baited corral traps and restraint

chutes at these feedgrounds, it is possible to handle, mark

and sample hundreds of elk each winter. A before–after con-

trol-impact study could assess the interactive effects of

http://rstb.royalsocietypublishing.org/


rstb.royalsocietypublishing.org
Phil.T

7

 on March 12, 2018http://rstb.royalsocietypublishing.org/Downloaded from 
supplemental feeding on host stress, the microbiome, reproduc-

tion, immune function and disease susceptibility, with marked

elk sampled for several years before and after experimental clo-

sures. Faecal pellets and blood from restrained elk can be used

to determine relative stress levels, pregnancy, bacterial killing

ability, cytokine levels, genetics and brucellosis serostatus.

Fine-resolution spatial data on wolf and elk movement could

elucidate predator–host–disease interactions during winter

that catalyse or antagonize brucellosis transmission. Together

with the results of previous and ongoing telemetry studies,

such information would provide early insight into the effects

of feedground closures on elk population, movement and

disease ecology.
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